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Abstract—This paper investigates the performance of turbo
codes transmitted over the Bernoulli-Gaussian impulsive noise
channel. First, lower bounds on the performance of turbo codes in
the error floor region are derived based on the union bound. Sec-
ond, infinite length analysis of turbo codes is proposed through
the method of density evolution that provides a performance
measure of these codes in the waterfall region. Finally, bit error
rate curves based on Monte Carlo simulations are shown together
with the proposed bounds.

Index Terms—Turbo codes, iterative decoding, density evolu-
tion, impulse noise, Bernoulli-Gaussian channel.

I. INTRODUCTION

The impact of impulse noise on communication systems
such as in digital subscriber line (DSL) networks [1] and in
powerline communication systems [2] has long been studied.
Several statistical models have been developed to describe the
behavior of impulse noise [3], among which the Bernoulli-
Gaussian noise model [4], [5] is of practical interest due to its
simplicity in approximating the impulsive behavior for various
communication channels.

The design of error correcting codes for impulsive noise
channels has been a very active research topic for the past
years. Known for their flexibility in terms of coding rates
and codeword lengths, trellis codes, whether convolutional or
turbo codes, have been the main candidates in both wired
and wireless standards. Standards developed for narrowband
communication over powerline, such as PRIME (Powerline-
Related Intelligent Metering Evolution) [6] and G3 [7], choose
convolutional codes as the forward error correction method.
Some works have recently dealt with the design of convo-
lutional codes for impulsive noise channels in which bits
facing a pulse of noise are either brought to a bit level (i.e.
clipping) or simply set as an erased bit (i.e. blanking) [8],
[9]. For instance, the authors in [10], [11] propose decoding
algorithms for codes that take into account both erasures (due
to impulse noise) and noisy observations, and the authors in
[12], investigate the performance of convolutional codes over
narrowband impulsive noise channels. In [13], the authors
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provide an analytical framework for the performance of con-
volutional codes over the Bernoulli-Gaussian noise channel.
However, no such analysis exists for turbo codes [14], which
are among the best known codes for approaching the capacity
of various types of channels. Unlike convolutional codes, the
performance of turbo codes is determined by two error rate
regions: the waterfall region, due to the interleaving gain of
the code, and the error floor region, due to the poor free
(minimum) distance of the code [15]. For these reasons, in this
paper, we propose a framework for analyzing turbo codes over
the Bernoulli-Gaussian channel in the two aforementioned
error rate regions.

The rest of this paper is organized as follows: in Section II,
we present the system model. In Section III, bounds on the
performance of turbo codes in both the error floor (Section
III-A) and waterfall regions (Section III-B) are proposed.
Section IV presents bit error rate performance results using
Monte Carlo simulations, Section V gives the concluding
remarks.

II. SYSTEM MODEL

We consider transmission over the Bernoulli - Gaussian
impulsive noise channel (BGC), whose model is shown in Fig.
1.
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Fig. 1. The Bernoulli Gaussian impulsive noise channel

The received symbol is r = s+η, where s is the transmitted
Binary Phase-Shift Keyed (BPSK) symbol (i.e. taking values
+1 or −1), and η is a Bernoulli-Gaussian complex noise
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realization with probability density function:

f =

{
N (0, σ2

g), w.p. 1− p
N (0, σ2

g + σ2
I ), w.p. p

where “w.p.” means “with probability”, p being the probability
of occurrence of a noise pulse, σ2

g being the variance of
the Gaussian noise (denoted as N0 in the sequel), σ2

I being
the variance of the impulse noise, and N (0, σ2) represents a
normal (Gaussian) distribution with zero mean and variance
σ2. For the analysis of linear codes over such channels, a
symbol corrupted by a noise pulse (with probability p) will be
processed before being fed to the iterative receiver in a goal to
enhance the performance [8]. We assume perfect detection of
the impulse noise, i.e. the location of the pulses is known at
the receiver. The first method, known as clipping, consists of
setting the level of a received symbol that crosses a threshold
τ to the level of the closest constellation symbol as:

y =

{
r, if |r| ≤ τ
γ, if |r| > τ

The second method, called blanking, consists of setting the
received signal amplitude to zero when it crosses τ .

y =

{
r, if |r| ≤ τ
0, if |r| > τ

The setup of the threshold value τ has already been studied in
the literature: the authors in [8] use numerical optimization to
choose the threshold value, while the authors in [9] investigate
on the optimization in closed form. It has been extensively
shown, namely in [13], that blanking is way superior to
clipping over the BGC, as in the case of a noise pulse that
has a large amplitude, it is best to provide the decoder with a
“neutral” value of 0 (i.e. a probability on the bit of 0.5), than
to feed it with a biased value. In other words, with BPSK
transmission, the channel observation on a coded symbol
x ∈ {±A} is proportional to p(y/x) = e−(y−x)

2/2σ2
g/
√
2πσg ,

and can be written as:

obs(x) =


1

1+exp

(
− 2Ay

σ2g

) , w.p. 1− p

0.5, w.p. p

In the sequel, the encoder is a turbo encoder consisting
of two identical Recursive Systematic Convolutional (RSC)
encoders in parallel separated by an interleaver of length K
[14]. The decoder consists of two soft-input soft-output (SISO)
channel decoder that iteratively generate extrinsic probabilities
on the bits based on the “Forward-Backward” algorithm [16].
At the last iteration, the decision is taken on the a posteriori
probability on the bit which is given by the product of the
observation, the extrinsic probability computed by the decoder,
and the a priori probability on the bit. In the next section,
bounds on the performance of turbo codes transmitted over
the BGC will be derived, both in the error floor and in the
waterfall regions.

III. ERROR BOUNDS ON THE PERFORMANCE OF TURBO
CODES OVER THE BERNOULLI-GAUSSIAN CHANNEL

The performance of turbo codes [14] over ergodic channels
is characterized by two error rate regions: the waterfall region
for low signal-to-noise ratios (SNR), and the error floor region
for high SNR. The error floor is a result of the poor minimum
distance of these codes, while the fast drop in the error rate
in the waterfall region is due to the advantageous distance
spectrum, i.e. to the fact that a small number of codewords are
within small distances from each others. The performance of
turbo codes in the error floor region has been analyzed through
bounds on the the performance for various channels, like for
instance for Gaussian noise channels in [15]. On the other
hand, the performance in the waterfall region can be linked
to the convergence behavior of the iterative decoder, i.e. to
the performance of turbo codes for large block lengths. This
can be assessed through the computation of density functions
as they evolve from one iteration to the next. This technique,
known as density evolution, has been used for other families
of capacity-approaching codes, like low density parity-check
(LDPC) codes for instance [17]. In this section, we will first
propose a lower bound on the minimum distance of turbo
codes over the BGC. We will then provide decoding thresholds
for these codes over the BGC using the density evolution
technique.

A. Lower bound on the performance of turbo codes over the
Bernoulli-Gaussian channel

In this section, we will derive a union bound on the
performance of turbo codes in the error floor region. In the
presence of impulse noise (occurring with probability p), as
mentioned in the previous section, the bits that encounter a
noise pulse are either clipped to a bit level (either 0 or 1), or
blanked (to represent a bit erasure). In both cases, impulse
noise will add a penalty in the performance with respect to
classical Gaussian noise. For this reason, we consider first
φb [ω(c)] ∈ [0, 1], the penalty factor for trellis codes due to
blanking [13] for a codeword c of Hamming weight ω(c).

Proposition 1: Under blanking, the penalty factor introduced
by Bernoulli-Gaussian impulsive noise channel on the perfor-
mance of a convolutional code is given by:

φb [ω(c)] =

∑ω(c)
i=0

(
ω(c)− i

2

) (ω(c)
i

)
(1− p)ω(c)−i pi

ω(c)
(1)

Proof: We consider Binary Phase-Shift Keying (BPSK)
and the 4-state half-rate Recursive Systematic Convolutional
(RSC) (1, 5/7)8 code whose trellis is shown in Fig. 2, knowing
that the analysis can be generalized to any RSC code and any
modulation scheme. The all-zero (blue dashed) codeword and
the red dotted codeword differ by ω(c) = dfree = 5 bits. In
each position in which the two codewords differ, the Euclidean
distance generated is 2

√
Ec, where Ec = RcEb. Now suppose

that i bits out of the ω(c) in which the codewords differ are
subject to a noise pulse (with probability p) and that they are
blanked at the decoder’s input. In this case, a bit corresponding
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to a blanked symbol has a probability of 0.5, which is midway
between the two possible values for the bit (i.e. a 0 or a
1). This will result in a Euclidean distance of

√
Ec between

the two codewords (i.e. half the Euclidean distance generated
between 0 and a 1, which is of 2

√
Ec). This means that the

two codewords will now differ by a Euclidean distance of
√
Ec

(with probability 1−p) in ω(c)−i positions, and they will not
differ (with probability p) in the remaining i positions. Now
if we consider the different values of i between 0 and ω(c),
we obtain a binomial expression as in the numerator of (1).
The denominator in the expression of φb (ω(c)) is used for
normalizing the expression, so that we obtain φb (ω(c)) = 1
whenever p = 0 and hence i = 0. �

Fig. 2. Trellis of the 4-state half-rate RSC (1, 5/7)8 code

We will now propose a lower bound on the minimum
distance of turbo codes on the BGC as a function of φb [ω(c)]
based on results from [15], [18]. As discussed in Section
II, only blanking of symbols subject to noise pulses will
be considered, as its superiority to clipping applies to any
soft-input decoder.

Proposition 2: Under blanking, the union bound on the bit
error rate (BER) of a parallel turbo code at a distance d(j)
with overall rate Rc is given by:

B(u) =

u∑
j=1

Njω(j)φb[ω(j)]

K
Q

(√
2Eb

N0
d(j)φb[d(j)]Rc

)
(2)

where φb[ω(j)] is taken from (1), d(j) is the jth non-zero
distance, ω(j) = W (j)/Nj , W (j) is the total information
weight of all codewords of weight d(j), and Nj is the number
of codewords of weight d(j), and Q(x) = 1

2erfc( 1√
2
), “erfc”

being the complementary error function.
Proof: The expression in (2) is based on the union bound

on the performance of parallel concatenated turbo codes over
AWGN channels with a given distance spectrum [15], [18].
The multiplicative factor depends on the multiplicity of the
turbo code in consideration (i.e. Nj) and on ω(j), while the
argument of the Q function depends the coding rate Rc and the
weight of codeword j, namely d(j). For this reason, at a given
codeword j, we assume a penalty factor whose expression is
given in (1) affecting both ω(j) in the multiplicative factor of
the union bound and d(j) within the Q function. �

The union bound described in (2) gives a lower bound on
the performance of a turbo code while considering u code-
words from the distance spectrum. All the parameters of the
expression (i.e. Nj , ω(j), and d(j)) can be obtained through
well-known algorithms [15], [18]. Some examples will be
considered in the sequel for Monte-Carlo simulations. We will
next propose a way to compute the infinite length performance
bound of turbo code, which corresponds to the “waterfall
region” in the error rate curves, based on the method of
probability density evolution, or simply “density evolution”
[17].

B. Infinite length performance of turbo codes over the
Bernoulli-Gaussian channel: Density evolution

The density evolution (DE) method is widely known by
researchers in the coding community for giving the limiting
convergence behavior of capacity-approaching codes for large
block lengths [17]. It has been used to find optimal degree
profiles for irregular Low density Parity-Check (LDPC) codes
in [17], [19], [20] or even irregular turbo codes [21], [22]. In
this paper, we propose to use this method to determine the
performance limits of turbo codes transmitted over the BGC
for large block lengths as a function of the probability of noise
impulses p. To start with, we consider rate-Rc turbo codes built
from two rate-ρ constituent RSC codes. Due to the symmetry
of the channel, we assume that the all-zero codeword is
modulated into x = −1,−1, ...,−1 and transmitted over the
Bernoulli-Gaussian noise channel of Fig. 1. At the channel
output, and with blanking, each received sample can be written
as:

y =

{
x+ η = −1 + η, w. p. 1− p
0.0, w. p. p

This implies that the log-likelihood ratio (LLR) is given by
the well-known expression:

M0 =

{
log p(y|x=−1)

p(y|x=+1) = 2
N0
y = − 2

N0
(1 + η), w. p. 1− p

0, w. p. p
(3)

We have that M0 ∼ (1− p)N (− 2
N0
, 4
N0

) + p.0, and thus
the associated probability density function will be denoted by
p0(x).

The local neighborhood tree for an information bit belong-
ing to an acyclic asymptotically large turbo code is shown in
Fig. 3.

The index i refers to the decoding iteration number. A
bitnode has one incoming extrinsic probability ξi and one
outgoing a priori probability πi which also plays the role of a
partial a posteriori probability (APP). The total APP may be
obtained by combining πi with an extra extrinsic probability.
The message associated to ξi is Mi =

log(ξi(bit=0))
log(ξi(bit=1)) and its

probability density function is pMi
(x). The probability density

function of log-ratio messages associated to πi will be denoted
by pi(x). Following [17] we have that

pi(x) = F−1 [F [p0(x)]F [pMi
(x)]] (4)
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Fig. 3. Propagation tree used in density evolution for an irregular turbo code.
The πi represents a priori probability, and the ξi the extrinsic probability.
Circles represent bitnodes, and rectangles are local neighborhood RSC trellis
constraints.

where F denotes the Fourier transform operator. Based on par-
tial a posteriori probabilities, the average bit error probability
at iteration i is defined as

Pb(i) =

∫ 0

−∞
pi(x)dx (5)

At an RSC checknode level, and as illustrated in Fig. 3,
based on a priori input πi−1 with probability density function
(PDF) pi−1(x), an accurate estimation of pMi

(x) is made via
a forward-backward algorithm [16] applied on a sufficiently
large trellis window of size W centered around the information
bit. Given a turbo code ensemble, the decoding threshold is the
minimal signal-to-noise ratio Eb/N0 for which Pb(i) vanishes
with i. The threshold can be determined via Density Evolution
(DE) [17], a procedure where pi(x) is updated from pi−1(x)
by propagating probabilistic densities through the tree graph
of Fig. 3.

C. Numerical results for AWGN

As an example, for a rate Rc = 1/3 parallel turbo code
built from two half-rate RSC (13, 15)8 constituent codes, the
convergence threshold for p = 0.01 was of −0.03 dB, while
the threshold for p = 0.1 was of 0.53 dB. Similarly, for a half-
rate parallel turbo code built from two half-rate RSC (37, 21)8
constituent codes with puncturing, the convergence threshold
for p = 0.01 was of 0.57 dB, while the threshold for p = 0.1
was of 1.25 dB.

IV. SIMULATION RESULTS

In this section, bit error rate performances of parallel turbo
codes over the BGC with blanking under iterative decoding
are shown using Monte Carlo simulations. The modulation
is BPSK, and the probability of a noise pulse is p = 0.1.
Error rate curves are compared to union bounds and density

evolution thresholds derived in Section III. Fig. 4 shows the
performance of the parallel Rc = 1/3 turbo code obtained
from two half-rate 8-state RSC (1, 13/15)8 constituent codes.
For K = 1000, a Progressive-Edge Growth (PEG) interleaver
is used [23], which ensures that the free distance of the code
increases as log(K) (i.e. optimal growth). At this interleaver
size, the distance spectrum of the code is given in Table I
below.

TABLE I
DISTANCE SPECTRUM OF THE Rc = 1/3 TURBO CODE, RSC (1, 13/15)8

CONSTITUENT CODES, K = 1000 FROM [18]

j d(j) N(j) ω(j)
1 (dfree) 21 1 2

2 22 6 72
3 24 2 6
4 25 2 12

As d(2) is very close to d(1) = dfree, a better estimation of
the error floor bound is obtained by considering B(2) instead
of B(1) = B(dfree). However, taking more terms in the
union bound does not improve the bound. On the other hand,
the density evolution threshold is a good approximation for
the code performance but for a large interleaver size (namely
K = 100000), where pseudo-random interleaving is used. Fig.
5 shows the performance of the parallel Rc = 1/2 turbo
code obtained from two half-rate 64-state RSC (1, 21/37)8
constituent codes with puncturing. In this case, the distance
spectrum for K = 65536 is given in Table II below.

TABLE II
DISTANCE SPECTRUM OF THE Rc = 1/2 TURBO CODE, RSC (1, 21/37)8

CONSTITUENT CODES, K = 65536 FROM [15]

j d(j) N(j) ω(j)
1 (dfree) 6 4.5 9

2 8 11 22
3 10 20.5 41
4 12 75 150

Now as d(2) is larger than dfree, there is no signifi-
cant improvement in the error floor bound by moving from
B(1) = B(dfree) to B(2). As for the waterfall region, the
density evolution threshold gives a good estimate of the code
performance.

V. CONCLUSION

We proposed bounds on the bit error rate performance
of turbo codes over the Bernoulli-Gaussian impulsive noise
channel with blanking under iterative decoding. In the error
floor region, a union bound on the bit error rate was derived. In
the waterfall region, an infinite length analysis was provided
based on probability density evolution that gives a bound on
the performance of the code. Bit error rate results obtained
from Monte Carlo simulations were shown to fit with the
proposed bounds.
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Fig. 4. Performance of a parallel rate-1/3 turbo code over the BGC with
blanking, p = 0.1, BPSK modulation, half-rate 8-state RSC (1, 13/15)8
constituent codes, PEG interleaving, with lower union bound and density
evolution threshold.
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Fig. 5. Performance of parallel half-rate turbo codes over the BGC with
blanking, p = 0.1, BPSK modulation, half-rate 64-state RSC (1, 21/37)8
constituent codes, pseudo-random interleaving, with lower union bound and
density evolution threshold.
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