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Abstract—This paper investigates the performance of convolu-

tional codes with quadrature amplitude modulation transmitted

over the Bernoulli-Gaussian impulsive noise channel. First, the

performance superiority of blanking over clipping of the symbols

affected by noise pulses is proved through the computation of a

lower bound on the bit error rate. Next, lower and upper bounds

on the bit error rate performance are derived. Finally, bit error

rate curves based on Monte Carlo simulations are shown together

with the proposed bounds.

Index Terms—Coded modulations, iterative decoding,

convolutional codes, impulse noise, Bernoulli-Gaussian channel.

I. INTRODUCTION

IMPULSE noise is known to be present in many commu-

nication systems, such as in digital subscriber line (DSL)

networks [1] and in powerline communication systems [2].

Several statistical models have been developed to describe

the behavior of impulse noise [3], that are the Bernoulli-

Gaussian model [4], [5], the Gaussian-Mixture model [6], and

the Middleton Class-A, Class-B, and Class-C [7]. Among these

models, the Bernoulli-Gaussian noise model is of practical

interest due to its simplicity in approximating the impulsive

behavior for various communication channels [5], [8], [9].

The design of error correcting codes for impulsive noise

channels has been a very active research topic for the past

years. Known for their flexibility in terms of coding rates and

codeword lengths, convolutional codes have been the main

candidates in both wired and wireless standards. Standards de-

veloped for narrowband communication over powerline, such

as PRIME (Powerline-Related Intelligent Metering Evolution)

[10] and G3 [11], choose convolutional codes as the forward

error correction method. Some works have recently dealt with

the design of convolutional codes for impulsive noise channels

in which bits facing an pulse of noise are either brought

to a bit level (i.e. clipping) or simply set as an erased bit

(i.e. blanking) [12]. For instance, the authors in [14], [15]

propose decoding algorithms for codes that take into account

both erasures (due to impulse noise) and noisy observations,

This work has been supported by the “Communication Systems with Re-

newable Energy Micro-Grid” COM-MED project (ERANETMED-ENERG-

11-281).

however only hard decision decoding is considered. In [16],

the authors investigate the performance of convolutional codes

over narrowband impulsive noise channels, however the work

does not provide theoretical analysis of the performance.

For this reason, in this paper, we propose a framework for

analyzing convolutional coded modulations over the Bernoulli-

Gaussian channel under both clipping and blanking.

The rest of this paper is organized as follows: in Section II,

we present the system model. In Section III, a performance

comparison of coded modulations under both clipping and

blanking is shown, which leads to bounds on the error rate

performances of such schemes. Section IV presents bit error

rate performance results using Monte Carlo simulations, Sec-

tion V gives the concluding remarks.

II. SYSTEM MODEL

We consider transmission over the Bernoulli - Gaussian

channel, whose model is shown in Fig. 1. The channel model

is r = s + n, where s is an M = 2m-Quadrature Amplitude

Modulated (QAM) symbol, where m is the number of bits per

symbol, and n = nI + jnQ is a Bernoulli-Gaussian complex

noise realization with probability density function:

F (nI) = F (nQ) = (1− p)N (0, σ2
g) + pN (0, σ2

g + σ2
I )

where p is the probability of occurrence of a noise pulse, σ2
g

is the variance of the Gaussian noise (denoted as N0 in the

sequel), σ2
I is the variance of the impulse noise, and N (0, σ2)

represents a normal (Gaussian) distribution with zero mean

and variance σ2.

For the analysis of linear codes over such channels, a

symbol corrupted by a noise pulse (with probability p) will be

processed before being fed to the iterative receiver in a goal

to enhance the performance [12]. We assume perfect detection

of the impulse noise, i.e. the location of the pulses is known at

the receiver. The first method, known as clipping, consists of

setting the level of a received symbol that crosses a threshold τ
to the level of the closest constellation symbol γ ∈ M -QAM,

as:

y =

{

r, if |r| ≤ τ

γ, if |r| > τ
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Fig. 1. The Bernoulli Gaussian impulsive noise channel

The second method, called blanking, consists of setting the

received signal amplitude to zero when it crosses τ .

y =

{

r, if |r| ≤ τ

0, if |r| > τ

The setup of the threshold value τ has already been studied

in the literature: the authors in [12] use numerical optimization

to choose the threshold value, while the authors in [13]

investigate on the optimization in closed form. In Section III,

the effect of the two schemes on the performance of linear

codes will be considered.

In addition to the above described channel model, digital

transmission is performed as follows: an information packet

of length K bits is fed to a recursive systematic convolutional

(RSC) code that generates P parity bits. The codeword of

length N = K + P bits is then fed to an interleaver before

being modulated and sent over the channel. The receiver con-

sists of a soft-input soft-output (SISO) detector that generates

extrinsic probabilities ξ(ci) on received bits based on symbol

y and a priori probabilities π(cu) as:

ξ(ci) =
p(y/ci = 1)

p(y/ci = 0) + p(y/ci = 1)

=

∑

s′∈M(ci=1)

[(

e−‖y−s
′

‖2/2N0

)

∏

u6=i π(cu)
]

∑

s∈M

[

(

e−‖y−s‖2/2N0

)
∏

u6=i π(cu)
]

The soft values of the bits (corresponding to extrinsic

probabilities) are then deinterleaved before being fed to a

soft-input soft-output “Forward-Backward” decoder [17] that

generates extrinsic probabilities on the bits. The resulting soft

values of the bits are then fed to an interleaver and back to the

detector. After few iterations, a decision on the information

bits is made at the output of the decoder based on their a

posteriori probabilities (APP), as shown in Fig. 2.

III. ERROR BOUNDS FOR CODED MODULATIONS

The performance of convolutional codes over Gaussian

noise channels has long been studied, and bounds on the per-

formance of such codes have been derived [18]. For uncoded

M -QAM transmission, the bit error rate (BER) is given by:

Fig. 2. Iterative soft demodulator/decoder for a convolutional-coded modu-

lation.

Peb = 2

(√
M − 1√
M

)

Q

(

√

3m

M − 1

√

Eb

N0

)

In the presence of a convolutional code with rate Rc, and

assuming the all zero codeword has been transmitted, the

pairwise error probability (PEP) with M -QAM is given by:

Pep[ωH(c)] = P (0 → c) = 2

(√
M − 1√
M

)

Q





√

3m

M − 1

√

RcωH(c)Eb

N0





where ωH(c) is the Hamming weight of codeword c.

A. Penalty factor due to impulsive noise

In the presence of impulse noise, as mentioned in the

previous section, the bits that encounter a noise pulse are either

clipped to a bit level (either 0 or 1), or blanked (to represent

a bit erasure). In both cases, impulse noise will introduce

a penalty in the performance as compared to pure Gaussian

noise. For this reason, we introduce φc [ωH(c)] ∈ [0, 1] and

φb [ωH(c)] ∈ [0, 1], the penalty factors due to clipping and

blanking respectively.

Fig. 3. Trellis of the 4-state half-rate RSC (1, 5/7)8 code

Proposition 1: Under clipping, the pairwise error probability

of a coded modulation transmitted over the Bernoulli-Gaussian

impulsive noise channel with convolutional coding and M -

QAM modulation is:
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Pep,c[ωH(c)] = 2

(√
M − 1√
M

)

Q





√

3m

M − 1

√

RcωH(c)Eb

N0
φc [ωH(c)]





where

φc [ωH(c)] =

∑ωH (c)
i=0 (ωH(c)− i)

(

ωH (c)
i

)

(1− p)ωH (c)−i pi

ωH(c)
(1)

= 1− p

Proof: We consider Binary Phase-Shift Keying (BPSK) and the

4-state half-rate Recursive Systematic Convolutional (RSC)

(1, 5/7)8 code whose trellis is shown in Fig. 3, knowing that

the analysis can be generalized to any RSC code and any

modulation scheme. The all-zero (blue dashed) codeword and

the red dotted codeword differ by ωH(c) = dfree = 5 bits. In

each position in which the two codewords differ, the Euclidean

distance generated is 2
√
Ec, where Ec = RcEb. Now suppose

that i bits out of the ωH(c) in which the codewords differ

are subject to a noise pulse (with probability p) and that

they are clipped at the decoder’s input. In this case, a bit

corresponding to a clipped symbol can, in the worst case, result

in a Euclidean distance of zero between the two codewords;

this is due to the fact that by clipping the amplitude of a

modulated symbol, it can be easily confused with another

symbol from the constellation. In BPSK for instance, where a

level of −1 V corresponds to a bit of 0, and a +1 V to a bit

of 1, if a zero is transmitted and it is subject to a high positive

noise pulse, it will take a positive value (close to +1 V) after

clipping. This means that the two codewords will now differ

by a Euclidean distance of 2
√
Ec (with probability 1 − p) in

ωH(c)−i positions, and they will not differ (with probability p)

in the remaining i positions, which gives rise to (1) involving

a binomial expression. The denominator in the expression of

φc (ωH(c)) is used for normalizing the expression, so that we

obtain φc (ωH(c)) = 1 whenever p = 0 and hence i = 0. Now

if we define k = ωH(c)− i, (1) can be rewritten as:

φc [ωH(c)] =

∑ωH(c)
k=0 k

(

ωH(c)
k

)

(1− p)
k
pωH(c)−k

ωH(c)

which reduces to φc [ωH(c)] = (1− p)ωH(c)/ωH(c) = 1− p

Proposition 2: Under blanking, the pairwise error proba-

bility of a coded modulation transmitted over the Bernoulli-

Gaussian impulsive noise channel with convolutional coding

and M -QAM modulation is:

Pep,b[ωH(c)] = 2

(√
M − 1√
M

)

Q





√

3m

M − 1

√

RcωH(c)Eb

N0
φb [ωH(c)]





where

φb [ωH(c)] =

∑ωH (c)
i=0

(

ωH(c)− i
2

) (

ωH (c)
i

)

(1− p)ωH (c)−i pi

ωH(c)
(2)

Proof: The proof with blanking is somehow similar to that

with clipping, with one major difference: whenever a symbol

is blanked, its amplitude is set to zero. Consider for instance

BPSK, where a symbol si can be written as a function of

bit bi as: si = 2bi − 1. If si = 0 (i.e. blanked), this results

in bi = 0.5. This means that the corresponding bits take a

(soft) value of 0.5, the Euclidean distance between the two

codewords at this position will be equal to
√
Ec, and not zero

as with clipping. This means that the two codewords will now

differ by a Euclidean distance of 2
√
Ec (with probability 1−p)

in ωH(c) − i positions, and they will differ by a Euclidean

distance of
√
Ec (with probability p) in the remaining i

positions, which leads to (2).

B. Lower bound with clipping and blanking

We will now investigate on the impact of clipping and

nulling on the BER performance of convolutional codes. It

is known that the dominant PEP in the total error probability

is the one related to the codeword having ωH(c) = dfree, the

free distance of the convolutional code [18]. This means that

one can define a lower bound on the BER under both clipping

and blanking as:

PLB,b,c = A(dfree)F (dfree)Pep,b,c[dfree]

where A(dfree) represents the number of codewords at dis-

tance dfree and F (dfree) represents the number of bit er-

rors involved in the corresponding error event [18]. The

performance comparison between clipping and blanking is

highlighted in Fig. 4 below for the half-rate RSC (1, 5/7)8
code at Eb/N0 = 7 dB. This figure shows the superiority

of the blanking method, as, in terms of decoding, if a bit is

subject to a high noise pulse, the best thing is to deliver a

neutral observation on the bit to the decoder (i.e. 0.5), rather

than “forcing” it to a 0 or a 1.
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Fig. 4. Comparison between clipping and blanking for the half-rate RSC

(1, 5/7)8 code with dfree = 5 at Eb/N0 = 7 dB.
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C. Upper bound with blanking

We again consider the example of the four-state half-rate

RSC (1, 5/7)8 code with BPSK modulation. In order to derive

the upper bound on the performance, we use the method of the

transfer function of the convolutional code [18]. The transfer

function gives information about the paths that start from the

all-zero state and return to this state for the first time. To obtain

the transfer function, the all-zero state is split into two states,

one denoting the starting state and the other denoting the first

return. To every branch connecting two states corresponds a

function of the form DαNβJ where α denotes the number

of ones in the output bit sequence (equivalently the Hamming

weight of the codeword), β denotes the number of ones in

the input sequence and the exponent of J will be the number

of branches spanned when deriving the final transfer function.

The flow graph of the RSC (1, 5/7)8 code is shown in Fig. 5

below:

Fig. 5. Flow graph of the half-rate RSC (1, 5/7)8 code.

The transfer function is then the transfer function of the flow

graph between the starting all-zero state and the final all-zero

state denoted by T (D,N, J). Naming the states as follows:

A = 00, B = 01, C = 10, D = 11, and E = 00 is the final

all-zero state. The transfer function is then derived as:

T (D,N, J) = XE

XA

=
D5N3J3 −D6N4J4 +D6N2J4

1−DNJ −DNJ2 +D2N2J3 −D2J3

In polynomial form, we obtain:

T (D,N, J) = D5N3J3 +D6N2J4 + ...

where the first term D5N3J3 indicates that there is a path

starting from the all-zero state and returning to it for the first

time, for which the code word has a Hamming weight of

ωH(c) = dfree = 5, the input sequence contains three 1’s,

and it spans three branches. Because we only care about the

weight of the code, we can set T2(D,N) = T (D,N, J)|J=1.

The upper bound can then be calculated using :

Pb ≤
1

2

∂T2(D,N)

∂N
|
N=1,D=e

−φb[dfree]
RcEb
N0

(3)

Finally, assuming M -QAM modulation and soft decision

decoding, and using (3), the bound on the probability of bit

error for the RSC (1, 5/7)8 code is computed as:

Pupper =
1

2

3D5 − 6D6 + 2D7

(1− 2D)2
|
D=e

−φb[dfree] 3m
M−1

RcEb
N0

By using the same method, the upper bound on the perfor-

mance of the half-rate 8-state RSC (1, 17/15)8 code with M -

QAM is given in (4).

IV. SIMULATION RESULTS

In this section, bit error rate performances of convolutional

code-based coded modulation are shown using Monte Carlo

simulations. Error rate curves are compared to lower and upper

bounds derived in Section III. Moreover, for large SNR values,

the presence of impulse noise makes the receiver face an error

floor, as the decoder cannot recover from the erasures caused

by noise pulses. This error floor can be exactly computed, as

shown in [19]. For this reason, a new bound, called “erasure

bound”, was introduced in the figures. The erasure bounds for

the codes simulated in this Section are taken from [19], [20].

Fig. 6 and 7 shows the performance for half-rate 4-state codes

with BPSK and 16-QAM respectively, while Fig. 8 shows the

performance for a half-rate 8-state codes with QPSK. For 16-

QAM, s-random interleaving [21] with s = 18 was used to

avoid having the four bits of a blanked symbol adjacent in

the decoder, thus ensuring statistical independence of the bits

at the receiver side. Pseudo-random interleaving is used in

the other figures. In the three figures, the simulated results fit

within fractions of a dB of the bounds derived in this paper.

V. CONCLUSION

We proposed bounds on the bit error rate performance of

convolutional codes with quadrature amplitude modulation of

any constellation size transmitted over the Bernoulli-Gaussian

impulsive noise channel under iterative detection and decoding

under. By considering both clipping and blanking of received

symbols, we have theoretically proved the superiority of

the latter. Bit error rate results obtained from Monte Carlo

simulations were shown to fit with the proposed bounds.
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Pupper =

√
M − 1√
M

[

(

−D8 +D7 +D6
) (
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)
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]
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