
Approximation Capabilities of Neural
Networks using Morphological Perceptrons and

Generalizations
William Chang, Hassan Hamad, Keith M. Chugg

Ming Hsieh Department of Electrical and Computer Engineering
University of Southern California

Los Angeles, United States of America
{chan087, hhamad, chugg}@usc.edu

Abstract—Standard artificial neural networks (ANNs)
use sum-product or multiply-accumulate node operations
with a memoryless nonlinear activation. These neural
networks are known to have universal function approx-
imation capabilities. Previously proposed morphological
perceptrons use max-sum, in place of sum-product, node
processing and have promising properties for circuit im-
plementations. In this paper we show that these max-sum
ANNs do not have universal approximation capabilities.
Furthermore, we consider proposed signed-max-sum and
max-star-sum generalizations of morphological ANNs and
show that these variants also do not have universal approx-
imation capabilities. We contrast these variations to log-
number system (LNS) implementations which also avoid
multiplications, but do exhibit universal approximation
capabilities.

Index Terms—Neural networks, morpholgical percep-
trons, log number system

I. INTRODUCTION

Deep neural networks are driving the AI revolution.
They have led to breakthroughs in various fields ranging
from computer vision [1] and natural language process-
ing [2] to protein folding [3] and autonomous driving
[4]. The current trend is toward larger models. This has
motivated recent work on complexity reductions for both
inference and training. Complexity reduction techniques
such as pruning [5], sparsity [6], and quantization [7]
have been proposed. This is particularly important for
models deployed on edge devices that have limited
memory and computational resources.

Another approach for complexity reduction is to de-
part from the Multiply-Accumulate (MAC) (or sum-
product) processing used in standard Artificial Neural

This work is supported in part by the National Science Foundation
(CCF-1763747).

TABLE I
DIFFERENT NODE OPERATIONS STUDIED IN THIS PAPER

Node Operation Sum-Product Equivalent

sum-product z =
∑
i

(xiyi)

max-sum z =
∨
i

(xi + yi)

signed max-sum z =
∨
i

ai(xi + yi)

max∗-sum z = max∗
i

(xi + yi)

LNS
z = max∗±

i

(log |xi|+ log |yi|)

sz = sx ⊕ sy

Networks (ANNs). Radically different network struc-
tures, such as the Spiking Neural Network (SNN) [8],
[9], have been proposed. Others have proposed to simply
replace sum-product operations with a different, and
ideally more efficient, operations [10]–[14]. In table I,
we list the types of node operations that will be the
discussed in this paper, where ∨ denotes the max op-
erator. The morphological perceptron replaces the sum-
product by a max-sum operation [10], [12]. The use of
the max function inherently adds non-linearity to the
network. The morphological perceptron was extended to
use a signed max-sum operation by adding a binary sign
parameter in [11]. In the field of digital communications,
and specifically in error correction coding literature,
the max∗-sum operation1 is widely used in decoding
iterative digital codes [15]. This operation can be seen
as a natural extension to the max-sum node. Finally, it is
well known that the exact equivalent of a sum-product

1max∗-sum is also known as the Jacobian Logarithm [15]

can be implemented in the log domain, i.e. using the
Logarithmic Number System (LNS). LNS requires the
use of max∗+-sum and max∗−-sum processing along with
tracking the signs of the linear operands.

A neural network using LNS can thus implement the
same processing as a standard Artificial Neural Network
(ANN). Therefore, LNS-based networks inherit the ap-
proximation capabilities of standard ANNs. Specifically,
a single layer network in LNS with a non-linear acti-
vation is also a universal function approximator [16],
[17]. Several previous works successfully trained ANNs
using LNS and demonstrated that the performance of
these LNS-networks is on a par with standard networks
on publicly available datasets [13], [14], [18]. To the
best of our knowledge, the approximation capabilities of
neural networks with these max-like units have not yet
been studied. In this paper, our goal is to characterize
the approximation capabilities of neural networks having
a max-sum, signed max-sum or a max∗-sum nodes.
We prove that these kind of networks are not universal
approximators. In addition, we characterize the exact set
of functions that they can approximate.

The paper is organized as follows. In section 2, we
define our notation and review the universal approxima-
tion theorem of neural networks. Section 3 contains the
main results of the paper. We conclude in section 4. The
proofs of all the theorems are given in the appendices.

II. BACKGROUND

Consider a scalar-input and scalar-output fully con-
nected neural network with d hidden layers as shown in
Fig. 1. Denote the node function at each unit by the
g(.). Note that we also lump the activation function,
if any, in the definition of g(.). The standard MAC-
based node processing g(.) with input activation vector
x = [x1, x2, .., xn], weight vector w = [w1, w2, .., wn],
bias value b, and a non-linear activation function σ(.),
is defined as g(x,w, b) = σ(b+

∑n
i=1 wixi).

A well known fact of neural networks is that they
are universal approximators. In [17], it was shown that
a one-hidden layer neural network f : Rk → Rl

with a bounded and nonconstant activation function can
uniformly approximate any function h on Rk, given that
sufficient hidden units are available. This result has been
later extended to networks with unbounded activations,
such as the rectified linear activation (Relu) [19].

A class of neural networks N : [0, 1]n → R is said to
uniformly approximate a given function h : [0, 1]n → R
iff for any ϵ > 0, there exists a function N ∈ N such
that ∀x ∈ [0, 1]n : |N(x) − h(x)| < ϵ. This class of
neural networks is said to be a universal approximator

iff it uniformly approximates all continuous functions
h : [0, 1]n → R.

The universal approximation theorems mentioned
above concern neural networks with the standard sum-
product or MAC processing. In this paper, the ap-
proximation capabilities of neural networks with three
different non-standard node operations are investigated.

Our proof method is to show neural networks with the
non-MAC nodes exhibit bounded first derivatives. By the
following lemma, this implies that these networks are not
universal approximators.

Lemma 1. Given a single-input and single-output con-
tinuous neural network f : [0, 1] → R. Suppose that
a ≤ f ′(x) ≤ b almost everywhere for a, b ∈ R. Then f
can only uniformly approximate functions h : [0, 1] → R
such that a ≤ h′(x) ≤ b almost everywhere.

While this result appears intuitive, the same does not
hold for higher order derivatives. That is, if f (n)(x) ∈
[a, b] for some n ≥ 2, this does not mean that f can
only universally approximate functions h such that a ≤
h(n)(x) ≤ b. A simple counter example is a sum-product
network with Relu activation on the hidden layers, which
is known to be a universal approximator [19] but has a
bounded second derivative. In Appendix 1, we show that
the second derivative of such a network is zero a.e.

III. APPROXIMATION CAPABILITIES

In this section we consider the approximation capa-
bilities of neural networks with max-sum processing
in place of standard sum-product processing. We also
consider two generalizations to max-sum processing. We
show that these non-MAC networks are not universal
approximators from R → R, and thus they are also not
universal approximators for Rn → R for any n ≥ 1.

We state the results of each case in this section and
provide the proofs in appendices.

A. Max-Sum Network

In the case of a max-sum network, the node function
g(.) in Fig. 1 is defined as

g(x,w, b) = b ∨ (w1 + x1) ∨ · · · ∨ (wn + xn)

= b ∨

(
n∨

i=1

(wi + xi)

)
(1)

where ∨ is the max operator, i.e. x ∨ y = max(x, y).
The max-sum node is also known as the morphological
perceptron [10]. Note that the max operation inherently
adds non-linearity to the node and no explicit activation
function is used. Next we present our first theorem.

2

. .

Fig. 1. A d hidden layer neural network with scalar input x and scalar output fd(x). The node processing at each unit is donated by the
function g(.). Note that g(.) also includes the activation function, when applicable.

Theorem 1. Consider a single-input single-output, d
hidden layer neural network with max-sum node pro-
cessing fd(x) : R → R.

Then fd(x) = max(w,w′ + x) for some constants
w,w′ ∈ R.

Thus, max-sum node processing results in a very
limited class of functions that can be realized. In partic-
ular, by lemma 1, max-sum networks are not universal
approximators. In [10], max-sum layers were combined
with standard sum-product layers to obtain effective
classifiers.

B. Signed Max-Sum Network

In the case of a signed max-sum network, the node
function g(.) in Fig. 1 is defined as

g(x,w, b) = b ∨ a1(w1 + x1) ∨ · · · ∨ an(wn + xn)

= b ∨

(
n∨

i=1

ai(wi + xi)

)
(2)

where ai ∈ {−1, 1}. Note that the ai’s can either be
learnable network parameters or fixed. For our purposes,
this choice is irrelevant to the study of the approximation
capability of the network since we consider all ai ∈
{−1, 1}.

Theorem 2. Consider a single-input single-output, d
hidden layer neural network with signed max-sum node
processing fd(x) : R → R.

Then f ′
d(x) ∈ {−1, 0, 1} a.e.

By Lemma 1 signed max-sum networks are not univer-
sal approximators. In fact, by the above theorem, these
networks have very limited approximation capabilties.
Note also that the max-sum node is a special case of the
signed max-sum where all the ai’s are set to 1. Theorem
1 implies that the derivative of max-sum networks is
limited to the set {0, 1} which is a proper subset of the
possible derivatives of signed-max-sum networks.

C. Max*-Sum Network

To define the max*-sum node, first note the definition
of the max* function:

max∗(x, y) = ln (ex + ey) (3)

which can be nested as follows

max∗
i

xi = max∗(x1, x2, .., xn)

= ln (ex1 + ex2 + ..+ exn)

= ln

(
n∑

i=1

exi

)
(4)

In the case of a max*-sum network, the node function
g(.) in Fig. 1 is defined as

g(x,w, b) = σ(max∗(b,max∗
i

xi + wi))

= σ

(
ln

(
eB +

n∑
i=0

exi+wi

))
(5)

where σ(x) is any activation function such that σ′(x) ∈
[0, 1], e.g. a Relu.

3

The max*-sum node processing may be viewed as do-
ing arithmetic in the log domain. Consider the standard
sum-product ci =

∑
i aibi where ai, bi > 0 ∀i. If we let

Ci = ln(ci), Bi = ln(bi) and Ai = ln(ai) then

Ci = ln

(∑
i

aibi

)
= ln

(∑
i

eAi+Bi

)
= max∗

i
(Ai +Bi) (6)

This indicates that if all data inputs to the network as
well as all the weights are non-negative, then working
with max*-sum nodes is the equivalent of working with
the standard sum-product node, but in the log domain.
This is the reason for introducing a nonlinear activation
function for max*-sum networks. Specifically, if a linear
mapping with non-negative weights, biases, inputs, and
outputs is implemented in the log domain, it would
be a network with max*-sum node processing and no
activation function.

Theorem 3. Consider a single-input single-output, d
hidden layer neural network with max*-sum node pro-
cessing fd(x) : R → R.

Then 0 ≤ f ′
d(x) < 1

Again, by Lemma 1 max*-sum networks are not
universal approximators.

D. Discussion

In the previous subsections we proved that a neural
network with a max-sum, signed max-sum or max*-sum
node processing is not a universal approximator. If max*-
sum were extended to include signed inputs, weights, and
biases, one would need to separately track the effects on
the sign and magnitude of the quantities. In fact, this is
LNS arithmetic.

A neural network with LNS arithmetic, and a non-
linear activation function, is equivalent to a log-domain
sum-product ANN, and thus is also a universal approx-
imator. This suggests that it is unlikely that there exists
an ANN using max-like family of computations that is
a universal approximator and substantially less complex
than an LNS network.

We note that a recent pre-print paper, posted after
the acceptance of this work, proved that networks with
sum-product processing and non-negative weights are
not universal approximators [20]. Specifically, standard
ANNs with non-negative weights can generate sections
with negative slopes only. This is complementary to
our result for max*-sum processing, where max*-sum
processing can be seen as the log domain equivalent of
sum-product with non-negative values.

IV. CONCLUSION

We showed that an ANN with morpholgical percep-
tron (i.e., max-sum) node processing has a very limited
approximation capabilities. Furthermore, direct exten-
sions to this node processing, such as signed-max-sum
and max∗-sum, also are not universal approximators.
This suggests that it is unlikely to achieve universal ap-
proximation with a max-sum generalization substantially
simpler than an LNS implementation.

APPENDIX A
PROOF OF LEMMA 1

Proof. of Lemma 1
Let N(x) be a neural network that uniformly ap-

proximates h(x) : [0, 1] → R to ϵ accuracy for any
ϵ > 0. For the sake of contradiction, suppose that there
is a set of nonzero measure I such that h′(x) > b
a.e. for x ∈ I . Without any loss of generality, we can
assume I = [c, d] is a closed interval. It follows from
the condition h′(x) > b that

h(d) = h(c) + b(d− c) + δ (7)

for some constant δ > 0. Since N(x) is at most ϵ away
from h(a) it follows that N(c) < h(c)+ϵ. Thus, from the
continuity of N(x) as well as the condition N ′(x) ≤ b

N(d) < h(a) + ϵ+ (d− c)b. (8)

Thus:
h(d)−N(d) > δ − ϵ (9)

When ϵ < δ
2 , h(d) −N(d) > δ

2 > ϵ, which contradicts
the fact that N(x) uniformly approximates h(x) to ϵ
accuracy.

Similarly, it can be shown that h′(x) ≥ a a.e.

Proposition 1. A single-input single-output, sum-
product Network with Relu activation has its second
derivative equal to 0 a.e.

Proof. Let σ = max(0, x) be the ReLu function and
Nd(x) be the resulting d-hidden layer network. Proceed
by induction on the number of hidden layers. For one
hidden layer network with width n, we have

N1(x) =

n∑
i=1

w
[o]
i σ(w

[1]
i x) (10)

So that

N ′′
1 (x) =

n∑
i=1

w
[o]
i (w

[1]
i)2σ′′(w

[1]
i x) (11)

= 0 (12)

4

where the last equality holds a.e. since σ′′(x) = 0 except
when x = 0. For the inductive step, note that if the final
hidden layer has width n, then

Nd(x) =

n∑
i=1

w
[o]
i σ(gi(x)) (13)

where w
[o]
i are the weights at the output layer, and

g1(x), ..., gn(x) can be thought of sub-networks of
Nd(x) with d − 1 hidden layers, and thus by the
inductive hypothesis satisfy g′′i (x) = 0 a.e. The next
two derivatives of this network are computed as

N ′
d(x) =

n∑
i=1

w
[o]
i σ′(gi(x))g

′
i(x) (14)

N ′′
d (x) =

n∑
i=1

w
[o]
i (σ′′(gi(x))g

′
i(x)

2 + σ′(gi(x))g
′′
i (x))

(15)

The first term in the summation is 0 except when gi(x) =
0 which happens finitely many times, and thus this term
is equal to 0 a.e. The second term in the summation is 0
a.e. by the inductive hypothesis. Thus, N ′′

d (x) = 0 a.e.,
completing our induction.

APPENDIX B
PROOF OF THEOREM 1

To prove Theorem 1, the following lemma is needed,

Lemma 2. For any constants a1, a2, b1, b2, ∃w0, w1 such
that (a1 + (b1 ∨ x)) ∨ (a2 + (b2 ∨ x)) = w0 ∨ (w1 + x)

Proof. We first note that (a1+(b1∨x))∨(a2+(b2∨x)) =
a1+(b1 ∨x)∨ (a2−a1+ b2 ∨x) = a1+(b1 ∨x)∨ (c+
(b2 ∨ x)). Set

g(x) = a1 + (b1 ∨ x) ∨ (c+ (b2 ∨ x)) (16)

We hope to show that g(x) = w0∨ (w1+x) for some
w0, w1 which will depend on a1, b1, b2, c. We now have
the following cases based on these values.

Case 1: b1 > b2, c < 0. When x ≤ b2, we have
f(x) = a1+ b1∨ (b2+ c) = a1+ b1. When x ∈ (b2, b1),
we have f(x) = a1 + b1 ∨ (x + c) = a1 + b1. Finally,
when x ≥ b1, we have f(x) = a1+x∨(x+c) = a1+x.
Thus we can set w0 = a1+ b1 and w1 = a1, completing
this case.

Case 2: b1 > b2, c > 0. When x ≤ b2, we have
f(x) = a1 + b1 ∨ (b2 + c). When x ∈ (b2, b1), we have
f(x) = a1+b1∨ (x+c). Finally, when x ≥ b1, we have
f(x) = a1 + x∨ (x+ c) = x+ c+ a1. Thus we can set
w0 = a1 + b1 ∨ (b2 + c) and w1 = c + a1, completing
this case.

Since g(x) = a1+(b1∨x)∨ (c+(b2∨x)) = a1+c+
(−c+ (b1 ∨ x)) ∨ (b2 ∨ x), the lemma also holds when
b2 ≥ b1. This completes all the cases.

Proof. of Theorem 1
We can prove this by induction on the number of

hidden layers. Consider a one hidden layer network with
n computation units. The resulting function is of the
form

N1(x) = b[o] ∨

(
n∨

i=1

(
w

[o]
i + b

[1]
i ∨ (w

[1]
i + x)

))
(17)

for some real valued constants b[o], w[o]
i , w

[1]
i , b

[1]
i for i ∈

[1, n]. First note that b ∨ (w + x) = w + (b − w) ∨ x.
Then

N1(x) = b[o] ∨

(
n∨

i=1

(w
[o]
i + w

[1]
i +

(b
[1]
i − w

[1]
i) ∨ x

))
(18)

We can now apply Lemma 2 to equation (18) repeatedly
to complete our base case.

For the inductive step, suppose that the theorem is true
for d − 1 hidden layers. For a network with d layers,
suppose that the d-th hidden layer had n computation
units. Denote the output of each computation unit in the
d-th hidden layer as gi(x) for i ∈ [1, n]. Now gi(x) can
be thought of as a neural network with d − 1 hidden
layers. It is clear from these definitions that

Nd(x) = b[o] ∨

(
n∨

i=1

(
w

[o]
i + gi(x)

))
(19)

for some real valued constants b[o], w
[o]
i for i ∈ [1, n].

By the inductive hypothesis, each gi(x) = wi∨ (w′
i+x)

for some values wi, w′
i. As with the base case, Lemma

2 can be repeatedly applied to equation (19) to complete
the inductive step.

APPENDIX C
PROOF OF THEOREM 2

To prove Theorem 2, we first need the following
lemma, analogous to lemma 2.

Lemma 3. Consider the class of functions

F := {c1, c2 − x, c3 + x, c1 ∨ (c2 − x), c1 ∨ (c3 + x),

(c2−x)∨(c3+x), c1∨(c2−x)∨(c3+x)|c1, c2, c3 ∈ R}
(20)

5

Then ∀f, g ∈ F , we have f ∨ g ∈ F .

Proof. This is trivial to verify except when f or g takes
on the form (c2 − x)∨ (c3 + x), c1 ∨ (c2 − x)∨ (c3 + x.
To address this case, let σa1,a2,a3

(x) = (a1 − x) ∨ a2 ∨
(a3 + x). Then it is sufficient to verify the following
properties

1) σa1,a2,a3
(x) ∨ (b − x) = σc1,c2,c3(x) for some

c1, c2, c3 ∈ R.
2) σa1,a2,a3

(x) ∨ (b + x) = σc1,c2,c3(x) for some
c1, c2, c3 ∈ R.

3) σa1,a2,a3(x) ∨ b = σc1,c2,c3(x) for some
c1, c2, c3 ∈ R.

4) σa1,a2,a3
(x)∨σb1,b2,b3(x) = σc1,c2,c3(x) for some

constants c1, c2, and c3.
Property (1) can be proved as follows,

σa1,a2,a3(x) ∨ (b− x) (21)
= ((a1 − x) ∨ (b− x)) ∨ a2 ∨ (a3 + x)

= ((a1 ∨ b)− x) ∨ a2 ∨ (a3 + x)

= σa1∨b,a2,a3(x)

Properties (2) and (3) can be treated similarly. Property
(4) follows from basic properties of a ∨ b,

σa1,a2,a3
(x) ∨ σb1,b2,b3(x) (22)

= ((a1 − x) ∨ (b1 − x)) ∨ (a2 ∨ b2)

∨ ((a3 + x) ∨ (b3 + x))

Thus, letting c1 = a1 ∨ b1, c2 = a2 ∨ b2, c3 = a3 ∨ b3
gives us the desired result.

With this lemma we can now prove Theorem 2.

Proof. of Theorem 2 Since all the functions in F as
given in Lemma 3 have their derivatives in the set
{−1, 0, 1} a.e., it is sufficient to use induction on the
number of hidden layers to prove that the neural net-
works given by the theorem statement belong in F .
Consider a single input single output, one hidden layer
network with n computation units. The resulting function
is of the form

N1(x) = b[o] ∨

(
n∨

i=1

a
[o]
i (w

[o]
i +

b
[1]
i ∨ a

[1]
i (w

[1]
i + x))

)
(23)

for some real valued constants b[o], b[1]i , a[o]i , a[1]i , w[o]
i ,

w
[1]
i for i ∈ [1, n]. Since a

[1]
i (w

[1]
i +x) and w

[o]
i ∈ F as in

Lemma 3, note that w[o]
i +b

[1]
i ∨a

[1]
i (w

[1]
i +x) ∈ F , from

which it is clear that a[o]i (w
[o]
i +b

[1]
i ∨a

[1]
i (w

[1]
i +x)) ∈ F

as well. Thus, N1(x) ∈ F , completing the base case.
For the inductive step, suppose that the theorem is true

for d − 1 hidden layers. For a network with d layers,
suppose the d-th hidden layer had n computation units.
Denote the output of each computation unit in the d-
th hidden layer as gi(x) for i ∈ [1, n]. Now gi(x) is
effectively a neural network with d− 1 hidden layers. It
is clear from these definitions that

Nd(x) = b[o] ∨

(
n∨

i=1

a
[o]
i

(
w

[o]
i + gi(x)

))
(24)

for some real valued constants b[o], a
[o]
i , w

[o]
i for i ∈

[1, n]. From the inductive hypothesis, gi(x) ∈ F , from
which a repeated application of Lemma 3 shows that
Nd(x) ∈ F as well, completing our induction.

APPENDIX D
PROOF OF THEOREM 3

Proof. of Theorem 3 It is easy to see that N ′
d(x) is

undefined when σ′(x) is undefined. Thus there are only
finitely many points for which N ′

d(x) is undefined. For
the values of x for which N ′

d(x) is defined, we shall
show that N ′

d(x) ≤ 1 using induction on the number
of hidden layers. Consider a single-input single-output,
one hidden layer network with n computation units. The
resulting function is of the form

N1(x) = ln

[
eb

[o]

+

n∑
i=1

e
w

[o]
i +σ

(
ln

(
eb

[1]
i +ew

[1]
i

+x

))]
(25)

for some real valued constants b[o], w
[o]
i , b

[1]
i , w

[1]
i for

i ∈ [1, n]. From equation (25) it follows that

N ′
1(x) =

α(x)

β(x)
(26)

where

α(x) =
n∑

i=1

[
ew

[o]
i +σ(M(x))σ′(M(x))

ew
[1]
i +x

eb
[1]
i + ew

[1]
i +x

]
(27)

β(x) = eb
[o]

+

n∑
i=1

ew
[o]
i +σ(M(x)) (28)

M(x) = ln
(
eb

[1]
i + ew

[1]
i +x

)
(29)

6

Since σ′(x) ∈ [0, 1], it is immediately clear that
N ′

1(x) ≥ 0. N ′
1(x) < 1 follows from the following

inequalities.

ew
[1]
i +x < eb

[1]
i + ew

[1]
i +x (30)

and

n∑
i=1

[
ew

[o]
i +σ(M(x))σ′(M(x))

]
< eb

[o]

+

n∑
i=1

ew
[o]
i +σ(M(x)) (31)

completing the base case. For the inductive step,
suppose the theorem is true for d − 1 hidden layers.
Consider a network with d hidden layers where the dth
hidden layer has n computation units. Denote the output
of each computation unit in the d-th hidden layer as gi(x)
for i ∈ [1, n]. Now gi(x) is effectively a neural network
with d− 1 hidden layers. Since there is no activation at
the output layer, Nd(x) has the following form

Nd(x) = ln

[
eb

[o]

+

n∑
i=1

ew
[o]
i +σ(gi(x))

]
(32)

for some real valued constants b[o], w
[o]
i for i ∈ [1, n].

From equation (32) it follows that

N ′
d(x) =

∑n
i=1 e

w
[o]
i +σ(gi(x))σ′(gi(x))g

′
i(x)

eb[o] +
∑n

i=1 e
w

[o]
i +σ(gi(x))

(33)

From the inductive hypothesis, g′i(x) ≥ 0. Therefore
N ′

d(x) ≥ 0. N ′
d(x) < 1 follows from the following

inequality which is trivially true since g′i(x) < 1,

ew
[o]
i +σ(gi(x))σ′(gi(x))g

′
i(x) < ew

[o]
i +σ(gi(x)) (34)

This completes the proof.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” in Advances
in Neural Information Processing Systems, F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, Eds., vol. 25. Curran
Associates, Inc., 2012.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of deep bidirectional transformers for language
understanding,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, Jun. 2019, pp. 4171–4186.

[3] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, and
O. Ronneberger, “Highly accurate protein structure prediction
with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.

[4] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang,
X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-
driving cars,” CoRR, vol. abs/1604.07316, 2016.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-
ing deep neural network with pruning, trained quantization and
huffman coding,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2016.

[6] S. Kundu, M. Nazemi, M. Pedram, K. M. Chugg, and P. A.
Beerel, “Pre-defined sparsity for low-complexity convolutional
neural networks,” IEEE Transactions on Computers, vol. 69,
no. 7, pp. 1045–1058, 2020.

[7] R. Krishnamoorthi, “Quantizing deep convolutional networks for
efficient inference: A whitepaper,” CoRR, vol. abs/1806.08342,
2018.

[8] K. Roy and A. J. . P. Panda, “Towards spike-based machine
intelligence with neuromorphic computing,” Nature, vol. 575, no.
7784, pp. 607–617, 2019.

[9] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional
neural networks for energy-efficient object recognition,” Interna-
tional Journal of Computer Vision, vol. 113, no. 1, pp. 54–66,
2015.

[10] V. Charisopoulos and P. Maragos, “Morphological perceptrons:
geometry and training algorithms,” in International Symposium
on Mathematical Morphology and Its Applications to Signal and
Image Processing. Springer, 2017, pp. 3–15.

[11] P. Sussner, “Morphological perceptron learning,” in Proceedings
of the 1998 IEEE International Symposium on Intelligent Con-
trol (ISIC) held jointly with IEEE International Symposium on
Computational Intelligence in Robotics and Automation (CIRA)
Intell. IEEE, 1998, pp. 477–482.

[12] G. X. Ritter and P. Sussner, “An introduction to morphological
neural networks,” in Proceedings of 13th International Confer-
ence on Pattern Recognition, vol. 4. IEEE, 1996, pp. 709–717.

[13] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional
neural networks using logarithmic data representation,” CoRR,
vol. abs/1603.01025, 2016.

[14] A. Sanyal, P. A. Beerel, and K. M. Chugg, “Neural network
training with approximate logarithmic computations,” in ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2020, pp. 3122–3126.

[15] P. Robertson, E. Villebrum, and P. Hoeher, “A comparison of
optimal and suboptimal MAP decoding algorithms operating in
the log domain,” in Proceeding, IEEE International Conference
on Communications, Seattle, WA, 1995, pp. 1009–1013.

[16] K. Hornik, M. Stinchcombe, and H. White, “Universal ap-
proximation of an unknown mapping and its derivatives using
multilayer feedforward networks,” Neural networks, vol. 3, no. 5,
pp. 551–560, 1990.

[17] K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural networks, vol. 4, no. 2, pp. 251–257, 1991.

[18] M. Arnold, E. Chester, and C. Johnson, “Training neural nets
using only an approximate tableless lns alu,” in 2020 IEEE
31st International Conference on Application-specific Systems,
Architectures and Processors (ASAP), 2020, pp. 69–72.

[19] D. Yarotsky, “Error bounds for approximations with deep relu
networks,” Neural Networks, vol. 94, pp. 103–114, 2017.

[20] Q. Wang, M. A. Powell, A. Geisa, E. Bridgeford, and J. T.
Vogelstein, “Why do networks need negative weights?” 2022.
[Online]. Available: https://arxiv.org/abs/2208.03211

7

https://arxiv.org/abs/2208.03211

	Introduction
	Background
	Approximation Capabilities
	Max-Sum Network
	Signed Max-Sum Network
	Max*-Sum Network
	Discussion

	Conclusion
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Theorem 1
	Appendix C: Proof of Theorem 2
	Appendix D: Proof of Theorem 3
	References

